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Abstract

We build action recognition models for a newly
released dataset of human and animal actions, the
Moments—-In-Time . We explore and compare two cat-
egories of architecture architectures: the purely spatial
model and spatio-temporal model. Measured by top-1 and
top-5 accuracy, we found that the improvement of spatio-
temporal models is insignificant. Looking into the accuracy
in details for each classes, we found that for activities that
requires temporal information to recognize (such as clos-
ing and falling), the spatio-temporal models perform sig-
nificantly better. Moreover, we found that the CAM (class
activation mapping) reveals accurately the time and pixels
in the video that is responsible for activity recognition.

1. Introduction

Moments-In-Time [6] is a newly released video
dataset. Each video is three-second long, and labelled
with the action happening therein. This dataset has high-
coverage, high-density, and balanced classes. In total, there
are over 900,000 labelled videos from 339 activity classes.
A subset of this collection, which contains 200 classes and
500 videos in each class, is used as the dataset for the
CVPR Moment in Time Challenge 2018 - Mini Track [H
This project will be our participation in this challenge, in
which we explored several architectures of acitivity recog-
nition models and compared their prediction performance.

We investigated two categories of network architectures.
The first category is the purely spatial model where we clas-
sify each video based on several single frames of with in-
goring the temporal information. This category is our base-
line. The second category is the spatio-temporal model
where we also take into account of the temporal informa-
tion. The kernel used in each convolutional layers of this
model is a 3-dimensional tensor (2-dimensional spatially

Ihttp://challenge.moments.csail.mit.edu/
competitions/18

yinh@stanford.edu

jzhul2l@stanford.edu

and 1-dimensional temporally) which extracts spatial and
temporal information. We evaluation the prediction perfor-
mance of each model by the top-1 and top-5 accuracy on
the validation set.

As a side product, we would like our model to be able to
localize the features in the video that is responsible of the
action recognition. To do this, we generate the CAM (class
activation mapping) [[L1]] of each video to highlight the tem-
poral pixels that activates our prediction decision. Due to
the restriction of data, we will not test our performance of
localization based on some metric, just for fun and demon-
stration.

We used the ResNet model in the purely spatial architec-
ture, one of the most successful models in image classifica-
tion [4] . For spatio-temporal models, we only explored the
purely convolutional architectures because the videos are
relatively short (only 3 seconds long) and this architecture
admits feature localization. Specific examples we investi-
gated are the 3D-ResNet and 3D-ResNext [9]. We find that
the best model among them is the 3D-ResNext, and 2D-
ResNet is the second; however, the performance difference
among them is insignificant. Specifically, measuring with
the top-1 accuracy, 3D-ResNext is higher than 2D-ResNet
by 0.9%, which is then higher than 3D-ResNet by 0.5%.

We speculate that the main reason for this insignificancy
is the inadequacy of data volume. Note that we only have
100K videos in total, with 500 in each video class, which
is much smaller comparing with the ImageNetdataset for
image classification. With this small data classification, the
3D kernels used in spato-temporal models might not get
well-trained. Other possible reasons might be our limited
computing power and consequently limited choice of model
architecture

Besides naively comparing the classification accuracy
on the whole validation set, for deeper understanding, we
compare the prediction accuracy on each class of activi-
ties. We find that for actions that require temporal infor-
mation to recognize (such as falling and closing), spatial-
temporal methods obtains more accuracy; however, for ac-
tions that is easily recognized by a single picture (such as
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sailing and juggling), 2D-ResNet performs better since we
have taken advantaged of parameters that is pretrained on
the ImageNet.

Interestingly, despite the relative-low prediction accu-
racy, our localization experiments show that the network
does recognize the important pixels in the video. This find-
ing reveals that our model does capture the important infor-
mation in each video, and can potentionally predict better
with more cautiousness in parameter training and architec-
ture design.

2. Related Work

Training a neural network on video dataset is a hard
problem due to the lack of high-quality dataset, high re-
quirement of computing power, and efficient design of net-
work architecture [3)]. There are a few other creative meth-
ods developed specifically for video classification. The
models we explored in this project have many similari-
ties with the two methods mentioned below. For example,
Residual Blocks are used in many of the models because
of the great performance and the ability to extend to much
deeper structure. However, feature localization using the
Class Activation Mapping cannot be easily applied with the
following two methods, so we just provided a brief intro-
duction.

ConvNet+LSTM [2] The general architecture of this type
of network is to apply conventional 2D convolution on each
frame of video to exploit the spatial information, and adding
upon a recurrent layer on top to utilize their temporal rela-
tionship. This network has two main advantages. First, it
effectively takes advantage of the state-of-the-art techniques
in image classification, such as GoogleNet and ResNet.
Specifically, we can use the low-level layers that have been
proved to effectively extract local image features and use it
as video spatial features. Second, this type of models al-
low us to make prediction in an online fashion. Unlike 3D
ConvNet, we don’t need to look through all the frames in
the video; we can make prediction upon any video frame.
This advantage also makes the model applicable to video
of any length (in time), relieving the effort of video prepro-
cessing. Possible problem within this architecture is that it
deals with temporal information in a late fusion manner [J5]]
which is not as effective as slow fusion.

Two-Stream Networks [7] This kind of network archi-
tecture provides the current state-of-the-art activity recogni-
tion performance on existing medium-size video collection
such as HMDB-51 and UCF-101. As implied by the name,
the network contains two streams of subnetworks. The first
stream is a common 2D convolution on an arbitrary frame
of the video, extracting the spatial information. The second

stream works on optimal flow of the video clip [10], extract-
ing temporal information through tracking the movement of
object in the video.

3. Data
3.1. Number of videos

In this course project, we focus on using the
Moment s—In—-Time Mini track, which is a subset of the
original Moment s-In-Time dataset. The mini set con-
sists of 200 action classes. In the training set, we have 500
videos for each class, which gives 100,000 videos. In the
validation set, we have 50 videos for each class, which sums
to 10,000 videos.

3.2. Length of each video

Each video lasts around 3 seconds, and each second con-
tains 30 frames. To apply Convolutional Neural Network
to the video data, we have extracted all the frames from the
videos, and saved them as jpeg files. In our Mini dataset,
the number of frames for each video ranges from 77 to more
than 100.

3.3. Spatial Transformation

Each jpeg file has the same image height and width of
240 by 240. We normalize the data by subtracting the mean
for each RGB channel from each frame. Because many of
the videos have black margins, we crop out only the cen-
ter 112 by 112 pixels as inputs before feed into our model.
For a probability of 0.5, we also apply a horizontal flip to a
frame.

3.4. Temporal Transformation

Since each video consists of different number of
frames,in order to normalize each input example to the same
dimension, we further apply temporal transformation by
picking the same number of frames from each video. Due
to the limitation on computing power, we only sample 16
frames from the original video and hope those frames con-
tain key information for the model to classify.

4. Technical Approach
4.1. Models

For action recognition, following the categorization in
[1]], we will explore existing neural network models of three

types.

2D ConvNet [8] This is a direct application of the con-
ventional 2D Convolution Neural Network. We sampled 4
equal-distance frames from each video, and apply Resnet
to each frame. The ResNet kernels are still 2-dimensional.



The test time classification is just an average over the 4 in-
dividual frame level outputs.

To speedup the training process, we used the pretrained
ResNet 50 provided by PyTorch, and use transfer learning to
only fine-tune the last ResNet block and the fully-connected
layer.

3D ConvNet [8] This type of model is a directed gen-
eralization of the conventional 2D convolution to the 3D
case, where we introduce the temporal dimension in video
dataset. It aims to directly capture the spatiotemporal infor-
mation through the 3D kernels.

Though seemingly intuitive, this method does not per-
form as well as other two methods [[1]. One reason for
this inaccuracy lies in the lack of large video dataset (at
the magnitude of ImageNet) from which good kernals
of extracting video features can be obtained. Since the
Moments-In-Time datasets is a much larger collection
of videos, we expect a better performance of the 3D Con-
vNet method in our explorations.

ResNet has been used to improve image classification
performance by adding increased depth to CNNs [4], and
the use of very deep CNNs trained on ImageNet have facil-
itated the acquisition of generic feature representation. [3]]
extends the residual learning ([4])[ResNet] to a 3 dimen-
sional case, and is the first to consider such deep 3D Con-
vNets.

3D-ResNext [9] considers repeating a building block that
aggregates a set of transformations with the same topology,
and exposes a new dimension, which they call cardinality
(the size of the set of transformations), as an essential fac-
tor in addition to the dimensions of depth and width. [3]
adapts the 2D-ResNext to a 3-D setting, and use pretrained
parameters on Kineticsto obtain state of the art perfor-
mance on UCF-101and HMDB-51datasets.

4.2. Pretrain

Recent work [1]] has evaluated the performance of the
three types of models on the HMDB-51, UCF-101, and
Kinetics datasets. Besides comparison, it provides a
new model that combines 3D ConvNet with two stream net-
works. To overcome the difficulty of lack of video samples,
this model uses transfer learning to initialize the 3D kernel
filters with 2D kernels obtained from ImageNet training,
which significantly boosts the prediction accuracy.

3D Pretraining: Recent work [3] focus on the training
of very deep 3D CNNs from scratch for action recogni-
tion. To overcome the difficulty of limited sample size,
they use transfer learning with 3D kernel pretrained on
Kinetics dataset, which is positioned as a de facto video
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Figure 1: Class Activation Mapping Framework

| Method Top 1 accuracy (%) | Top 5 accuracy(%) |
2D-Resnet 18.0 40.7
Resnet-101 17.5 39.8
ResNeXt 101 18.9 41.0

Table 1: Performance Comparison between different mod-
els

dataset standard that is roughly equivalent to the position
held by ImageNet in relation to image datasets. Compared
to [L], which use transfer learning with 2D kernels obtained
from ImageNettraining, this paper is the first to consider
this 3D Pretraining idea to overcome the prior difficulty in
3-D Convnet training.

4.3. Discriminative Feature Localization

For discriminative feature localization, we plan to adopt
the Class Activation Mapping method proposed in [[11]. All
fully connected layers before the output layer are removed
from the model since they will mess up with location infor-
mation of the features. Alternatively, a global average pool-
ing layer is used on each channels of the last Convolutional
layer (assume n channels) to produce n neurons. These n
neurons are then multiplied by a matrix to produce the log-
its. The entries of the matrix are then used as weights for
calculating a weighted average of the channels of the last
Convolutional layer, which is just the heatmap to localize
the features. The framework is presented in Figure [I]

We use both the top-1 accuracy and top-5 classification
accuracy as the scoring metrics. Top-5 accuracy is appropri-
ate for video classification as videos may contain multiple
actions within them.

5. Experiments

In this section, we give an overview of the implemen-
tation details, present our model performance, and display
most confusing classes and compare different models to
gain an intuitive understanding of our model and dataset.



[ Freq | Actual Predicted
0.460 | barbecuing grilling
0.320 waking sleeping
0.300 planting gardening
0.280 | emptying filling
0.260 | handwriting | drawing
0.260 boiling frying
0.200 studying reading
0.200 folding crafting
0.200 slicing chopping
0.200 | exercising | stretching
0.200 boating fishing

Table 2: Most Confused Categories: The most commonly
confused categories for 2D Resnet

’ Freq \ Actual \ Predicted ‘
0.687 | barbecuing grilling
0.448 | gardening planting
0.367 frying stirring
0.306 sailing boating
0.285 closing opening
0.285 barking howling
0.244 boiling stirring
0.244 digging planting
0.229 cooking stirring
0.224 | combusting | burning
0.208 landing launching

Table 3: Most Confused Categories: We show the most

commonly confused categories of 3D-ResNext

Best predicted classes

grilling
tying
erupting
parading
rowing
gardening
bulldozing
pitching
rafting
mopping
frying
combusting
skating
typing
shredding
vacuuming
tattooin
storming
piloting
clinging
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Figure 2: Top 5 accuracy distribution per categories
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5.1. Implementation
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We use stochastic gradient descent with momentum to
train the networks and randomly generate training samples
from videos in training data in order to perform data aug-

Worst predicted classes
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Figure 3: Top 5 accuracy distribution per categories

mentation.

We also perform mean subtraction, which means that we
subtract the mean values of Moment s—-In-Time from the
sample for each color channel. All generated samples retain
the same class labels as their original videos. In our train-
ing, we use cross-entropy losses and backpropagate their
gradients. The training parameters include a weight decay
of 0.001 and 0.9 for momentum.

For 3D ConvNet models, we use the pretrained param-
eters from [3] on Kineticsdataset, and fine tune the pa-
rameters of the last two layers (the conv5-x and the fully
connected layer). For 2D ConvNet models, we use the pre-
trained model trained on ImageNet, and fine tune the fully
connected layer. We also try training without pretrained
parameters, but find that pretrained models obtain a much
faster convergence speed and a better performance.

For specific model structure and layer specification, We
illustrate them in a very intuitive way. See figure @] [Source:
[3]]. One can see these models as a generalization from
2D-ResNet ([4]) and 2D-ResNext ([9]).

5.2. Results

Table [I] summarizes the performance of three major
models on Moments—-In-Time dataset. Although 3D
ConvNet models are supposed to capture temporal infor-
mation and perform better than 2D ConvNet models, this
is not the case for our dataset because of the difficulty of
Moment s—In-Time dataset.

This performance is not as good as on other datasets be-
cause : 1.We only train the data on a small dataset (due to
computational power limitation, we only train on the Mo-
ment in Time Challenge 2018-Mini Track.) 2.The under-
lying difficulty of the task. As can be seen from the next
subsection, the model has to be trained to differentiate sim-
ilar actions such as barbecuing and grilling, gardening and
planting, frying and stirring, etc. These tasks can be hard
even for human, and thus we do not expect computer vision
models to obtain superior performance as in other datasets,
such as UCF-101, HMDB-51.

To understand some of the challenges, Figure [2] and [3]
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Figure 4: 3D-ResNext strucutre

breaks down performance by category for different mod-
els and modalities. Categories that perform the best tend
to have clear appearances and lower intra-class variation,
for example bowling and surfing frequently happen in spe-
cific scene categories. The more difficult categories, such
as covering, slipping, and plugging, tend to have wide spa-
tiotemporal support as they can happen in most scenes and
with most objects. Recognizing actions uncorrelated with
scenes and objects seems to pose a challenge for video un-
derstanding.

-.

Ground Truth: combusting

2D ResNet Top 5 Predictions:
1: pouring (0.264) 2: combusting (0.226) 3: burning (0.112) 4: launching (0.088) 5: smoking (0.048)

3D ResNet Top 5 Predictions:
1: burning (0.226) 2: combusting (0.185) 3: juggling (0.102) 4: spinning (0.045) 5: pouring (0.023)

Ground Truth: cooking

2D ResNet Top 5 Predictions:

1: grilling (0.620) 2: barbecuing (0.320) 3: baking (0.028) 4: frying (0.018) 5: combusting (0.004)
3D ResNet Top 5 Predictions:

1: grilling (0.664) 2: barbecuing (0.151) 3: baking (0.117) 4: frying (0.033) 5: cooking (0.013)

Ground Truth: handwriting

2D ResNet Top 5 Predictions:
1: drawing (0.728) 2: painting (0.040) 3: licking (0.017) 4: handwriting (0.015) 5: whistling (0.013)

3D ResNet Top 5 Predictions:
1: drawing (0.947) 2: handwriting (0.050) 3: tattooing (0.002) 4: cracking (0.000) 5: knitting (0.000)

Ground Truth: licking

2D ResNet Top 5 Predictions:
1: licking (0.183) 2: yawning (0.136) 3: eating (0.064) 4: sleeping (0.064) 5: resting (0.056)

3D ResNet Top 5 Predictions:
1: yawning (0.116) 2: waking (0.071) 3: crying (0.062) 4: eating (0.054) 5: sleeping (0.053)

Ground Truth: dancing

2D ResNet Top 5 Predictions:
1: cheering (0.304) 2: parading (0.148) 3: dunking (0.055) 4: shouting (0.051) 5: celebrating (0.047)

3D ResNet Top 5 Predictions:
1: protesting (0.575) 2: parading (0.145) 3: shouting (0.040) 4: drumming (0.034) 5: arresting (0.021)

Figure 5: Examples of missed detections



5.3. Most confusing categories

Table 2shows some of the most common confusions be-
tween categories. Generally, the most common failures are
due to errors in fine-grained recognition, such as confusing
frying versus stirring, barbecuing versus grilling, barking
and howling, or lack of temporal reasoning, such as confus-
ing opening versus closing. The confusions between 2D-
ResNet and 3D-ResNet are quire similar, suggesting that
our 3D Resnet does not resolve the confusions of 2D mod-
els.

5.4. Comparison between models

By comparing the accuracy of different models (3D-
ResNext and 2D-ResNet), we find that 3D-ResNext outper-
forms the 2D-ResNet in the following category: ’falling’,
0.479 (top 5 accuracy), 'biting’, 0.420 (top 5 accuracy),
“filling’, 0.380 (top 5 accuracy), 'closing’, 0.239 (top 1 ac-
curacy), 'chopping’, 0.260 (top 1 accuracy). We find that
all of these categories has something to do with actions and
temporal information. This confirms our conjecture that 3D
Models are better in terms of capturing temporal informa-
tion and may be do better in identifying actions.

Also, we find that 2D-ResNet outperforms the 3D-
ResNext in the following category: ’tattooing’, -0.400 (top
1 accuracy), ’juggling’, -0.319 (top 1 accuracy), ’sailing’,
-0.400 (top 5 accuracy). For these categories, you don’t
really need temporal information for correctly identifying
an action, but rather capture the information from a frame
of the video. Also, because the number of pixels we con-
sider in the 2D-ResNet is larger than that of 3D-ResNet, it
makes sense that 2D-ResNet is able to perform better than
3D-ResNext.

5.5. Feature Localization with CAM

After the training of the classification models, we adopt
the method in [T1] for feature localization. The output of
the last ResNet block and the Average Pooling layer for
each image, and the model parameters of the model out-
put weighting matrix have been extracted to calculate the
heatmap, which should capture the location of the key fea-
tures of each channel of the Class Activation Map. From
the results we see that this method has accurately localized
the key objects in the videos.

6. Conclusion

All three methods explored in our report give reasonable
performance on the Moments—In-Time Mini dataset.
We found that the spatio-temporal methods performs much
better in recognizing activities that requires extensive tem-
poral information, such as falling and closing. The great
performance of CAM reveals that our model can accurately
focus on the important time and pixel in the video, showing
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Ground Truth: arresting

2D ResNet Top 5 Predictions:
1: tying (0.506) 2: taping (0.084) 3: wrapping (0.064) 4: folding (0.062) 5: sanding (0.031)

3D ResNet Top 5 Predictions:
1: slicing (0.258) 2: chopping (0.180) 3: folding (0.105) 4: cutting (0.046) 5: wrapping (0.038)

Ground Truth: assembling

2D ResNet Top 5 Predictions:

1: sewing (0.122) 2: studying (0.118) 3: dining (0.086) 4: crafting (0.066) 5: placing (0.064)
3D ResNet Top 5 Predictions:

1: tying (0.506) 2: taping (0.084) 3: wrapping (0.064) 4: folding (0.062) 5: sanding (0.031)

Ground Truth: cutting

2D ResNet Top 5 Predictions:
1: emptying (0.205) 2: filling (0.150) 3: stirring (0.048) 4: pouring (0.048) 5: gardening (0.045)

3D ResNet Top 5 Predictions:
1: tying (0.506) 2: taping (0.084) 3: wrapping (0.064) 4: folding (0.062) 5: sanding (0.031)

Ground Truth: sewing

2D ResNet Top 5 Predictions:

1: sleeping (0.154) 2: sewing (0.126) 3: stroking (0.070) 4: frowning (0.048) 5: stitching (0.045)
3D ResNet Top 5 Predictions:

1: tying (0.506) 2: taping (0.084) 3: wrapping (0.064) 4: folding (0.062) 5: sanding (0.031)

Figure 6: Examples of CAM applied to videos (wrong clas-
sification but great localization)

the great potential of the model if given larger data volume
and computing power.

7. Future Work

Moment s—In-Timedataset presents a difficult task for
the field of computer vision in that the labels correspond to
different levels of abstraction (a verb like falling” can ap-
ply to many different agents and scenarios, involving ob-
jects of different categories). Thus it will serve as a new
challenge to develop models that can appropriately scale to
the level of complexity and abstract reasoning that a human
processes on a daily basis

We believe that the performance of our approach is cur-
rently limited by the size of the dataset and the number of



layers of our 3D-ResNet. If we have more computational
power in the future, we can preserve more pixels when
performing spatial transformations on figures, and explore
deeper ResNet on the full Moments-In-Time dataset
with parameters fine-tuning.

In addition, inspired by the strong performance of CAM,
we might consider other tasks that cares less on the classi-
fication side of the problem, but focuses more on the fea-
ture localization. We believe that CAM can be extended
to many other fields to help understanding and interpreting
deep Neural Networks.
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