Playing Chinese Checkers with
Reinforcement Learning

CS 229 Spring 2016 Project Final Report

Sijun He
[sijunhe, huwenijie,

Abstract—We built an AI for Chinese checkers
using reinforcement learning. The value of each board
state is determined via minimaxation of a tree of
depth k, while the value of each leaf is approximated
by weights and features extracted from the board.
Weights are tuned via function approximation. The
performance of our modified minimax strategy with
tuned weights stands out among all the other strate-
gies.

I. INTRODUCTION

Chinese checkers is a game played on a
hexagram-shaped board that can be played by two
to six players individually or as a team. The objec-
tive is to be the first to move all ten pieces across the
board into the opposite starting corners. As shown
in Figure [T} the allowed moves include rolling and
hopping. Rolling means simply moving one step in
any direction to an adjacent empty space. Hopping
stands for jumping over an adjacent piece into a
vacant space. Multiple continuous hops are allowed
in one move. A more detailed introduction of the
Chinese checkers can be seen in [Wikipedia.

The reinforcement learning is an area of machine
learning typically formulated as Markov decision
process (MDP). The model consists of states, ac-
tions, transitions, etc., which is suitable for decision
making in board game like Chinese checkers. The
objective of our project is to use reinforcement
learning to build an AI agent for Chinese checkers,
and to explore the effectiveness and efficiency of
the AL

To simplify the problem, our AI only solves
the one vs one mode of Chinese checkers. Dif-

Wenjie Hu

Hao Yin
yinh]@stanford.edu

Fig. 1. Chinese checkers rules (downloaded from jwebsite)

ferent from classic reinforcement learning where at
each state the player solves a simple maximization
problem, in our AI for Chinese checkers, it is a
adversarial zero-sum game. Therefore, each player
needs to consider not only his/her own strategy, but
also the opponent’s responding strategy. Therefore,
a better way to depict such procedure is minimax-
ation, which is elaborated in Section 3.

The biggest challenge in applying reinforcement
learning to our Al is how to learn the weights in
function approximation. We modified the standard
algorithm for function approximation so that it fits
our minimax setting, and we adopted a diminishing
learning rate to stabilize the update. Our simulation
results showed that this learning procedure is ef-
fective, in that the difference between the weights

https://en.wikipedia.org/wiki/Chinese_checkers
https://commons.wikimedia.org/wiki/File:Chinese_checkers_jump.svg#/media/File:Chinese_checkers_jump.svg

before and after an iteration is small. Simulation
results also showede the robustness of our update,
in that our learning procedure with different initial-
izations will end up with very close weights.

We tested the performance of different strategies
by playing against a random look-ahead greedy
player. Simulation results showed that the minimax
strategy with tuned weights significantly outper-
forms the minimax strategy with initial weights.
Moreover, we further modified our strategy such
that it divides the game into three stages and ap-
plies different strategies thereon. Simulation results
showed that this modified strategy outperforms the
basic minimax strategy.

The rest of this report is organized as the follows.
We first talk about how we implement the board
in Section 2. Then we introduce the basic method-
ology of our AI in Section 3, and point out the
difficulties in implementation as well as our solution
in Section 4. We cover our modified strategy in
Section 5. Simulation results are shown in Section
6.

II. BOARD REPRESENTATION

Figure [2] is the starting board where we worked
on in minimax searching, weights tuning, and sim-
ulations. Each o stands for a vacant spot, 1 stands
for a spot occupied by player 1’s piece, and 2 stands
for a spot occupied by player 2’s piece.

1

Fig. 2. Board representation

Note that this board is smaller than the original
board of Chinese checkers. The state-space com-

plexity of Chinese Checker 10%® is high [1]], thus
building and testing the Al for the full game board
is computationally intensive. Thus we adopted a
smaller board of 6 pieces for each player dur-
ing development and simulation. Furthermore, the
hexagram-shaped board was modified into a heuris-
tic diamond-shaped board, which is reasonable for
one vs one mode.

III. METHODOLOGY

We adopted the classical approach for game
playing Al, game search tree, which best mimics
the behavior of a human player while demonstrates
super-human performance by taking advantage of
the computing power. With each node representing
a board state of the game, and each edge represent-
ing one possible move from one board state to a
subsequent board state, the game search tree can
emulate the thinking process of a human player.
Chinese checkers is a two-player zero-sum game,
thus an objective “value” is needed to evaluate
the situation on the board. Player 1’s goal is to
maximize the “value”, while Player 2 minimizes it.
The logical approach is the minimax tree, which is
a decision tree that minimizes the possible loss for
a worst case scenario resulted from the opponent’s
optimal move.
Due to the large state-space complexity of Chi-
nese checker, it is unrealistic to build a top down
game search tree. Instead, a shallow k-depth min-
imax game tree that searches only the tip of the
tree is built. At each node, the “value” is taken
as the “minimax score” which is computed by the
minimax algorithm of depth k. When the search
has reached the bottom of the k-depth search tree,
a.k.a. the leaves, the score is approximated by a raw
score, which is a linear evaluation function based
on the features of the board state. We exploited 6
features that are based on the positions of pieces on
the board, which are described as the following:
e A;: the squared sum of the distances to the
destination corner for all pieces of player i;

e DB;: the squared sum of distances to the vertical
central line for all pieces of player i;

e (;: the sum of maximum vertical advance for
all pieces of player i;

with ¢ = 1,2. Note that we used the square of
the distances to penalize the trailing pieces, which
would motivate each player to make the pieces
cohesively and thus promote hopping. Besides, the
6 features are extracted from a larger amount of
possible features, so that the overfitting of the model
was avoided. The other features we have explored
and found unnecessary included:
e the horizontal variance (how scattered) of
pieces of each player;
« the vertical variance of pieces of each player;
e The maximum vertical advance for a single
piece of each player;
The evaluation function is the form of

V = w1(A2 — Al) + wg(BQ — Bl) + w3(01 — CQ)
where the weights w = (w;,wo,w3)T would be
trained via function approximation, which would be

described in the following section.

IV. CHALLENGES AND SOLUTIONS
A. Weights tuning and function approximation

The performance of the Al is highly dependent
on how well the weights in the evaluation function
is tuned. The objective of weights tuning is to allow
the evaluation function to consistently approximate
the minimax value through the depth-k tree search.
The challenge is to develop an algorithm to improve
and stabilize the weights within certain iterations.

The following Algorithm [I] based on function
approximation is our solution to perform weights
tuning. An introduction of function approximation
can be seen in [2[]. The basic idea of the algorithm
is to conduct value iteration after each game played
by both AI players. A new weight is computed
by performing least squares on the recorded fea-
ture vectors at each turn and their corresponding
minimax scores. A diminishing learning rate « is
imposed at each iteration, in order to stabilize the
update. The iteration is repeated until the weights
value are stabilized.

B. Run-time complexity and alpha-beta pruning

Another challenge is the run-time complexity of
the algorithm. Due to the nature of Chinese check-
ers, players usually have around 20 — 100 feasible

Algorithm 1 Weights Tuning

1: Initialize a weights w;

2: repeat

3: Play one game with both player following
Minimax-rule using weights w, record the
feature vectors at each turn in a matrix P
and the corresponding minimax scores in a
vector v;

4 Wpey & LeastSquare(®,v);

5 W WA a(Whpew — W)

until stabilized

=

moves at a typical turn. The worst-case number of
board states evaluated in a minimax tree of search
depth 4 is on the scale of 108. The large branching
factor, combined with any non-trivial search depth,
can easily result in impractical run-time for real-
time game play.

We address this problem by adopting alpha-beta
pruning. A detailed description of this technique can
be seen in [3[]. Furthermore, in order to expedite
the alpha-beta pruning, we enqueued all the feasible
moves of the player in a priority queue where the
priority is in the order of the weight-calculated score
of the resulting board if the corresponding move is
taken. The effectiveness of the alpha-beta pruning is
shown below in Table [, where we listed the time
used as well as the number of nodes visited for
the starting board to compute the minimax value. It
shows that the time used as well as the total number
of nodes visited is significantly reduced.

time (s) nodes visited
depths w/o w/ pruning w/o w/ pruning
2 4.07 0.85 196 27
3 84.39 7.31 4032 301
4 1763 30.68 82944 848
TABLE I

TIME USED AND NUMBER OF NODES VISITED IN COMPUTING
THE MINIMAX VALUE

V. FURTHER DEVELOPMENT

In the strategy described above, we adopted min-
imax tree search at each turn of playing. Note that
there is a waste of computing power in this strategy

at the beginning and end of game. At the beginning
of game, the pieces of two players have not interact
with each other, thus each player’s move does not
interfere the other’s. Therefore, it is unnecessary to
consider the opponent’s strategy, thus the minimax
strategy can be simplified as a pure maximizing
strategy. This is also true at the endgame, when
the pieces of two players are split up, thus each
player only needs to consider how to end the
game as soon as possible, without considering the
opponent’s strategy.

In the light of this knowledge, we modified our
strategy above in the following way. In the start
game, the player only consider his/her feasible
moves and chooses the one that gives the maximal
weights-calculated value. In the midgame when two
players’ pieces intersect, we search our optimal
move via the minimax procedure. In the endgame,
the player would take a move that achieves maximal
vertical advance.

We will test the performance of this strategy and
compare it with the basic strategy in Section 6.B(3).

VI. RESULTS

A. Convergence of weight tuning

With Algorithm we were able to tune and
stabilize the weights. The criterion for stabilization
iS Wypew — w. As shown in the plot, the difference
of weights diminished as more training games were
played. While the algorithm didn’t necessarily con-
verge, it did improve the effectiveness of the Al
dramatically after weights were tuned, which will
be shown in Section 6.B(1).

Furthermore, the algorithm is also robust to
initializations. Two different unit-length initial
weights were attempted, [0.577,0.577,0.577]7 and
[0.990, 0.099,0.099]7, and both of them converged
to the similar values after weight tuning. The tuned
weights from different search depth are shown
below:

W(gepinez) = [0.911 0.140 0.388]

W (gep—a) = [0.902 0.004 0.431]

i Depth 2
0.30], [\ — Depth4
\ [

0.25 |
3020 | |
: |
s |
so01s|

0.10f|

0.05 |/

0'000 5 10 15 20 25 30 35 40

Iterations

Fig. 3. Convergence of weight tuning

B. Benchmarking

We measured the performance of our algorithms
by simulating 200 games against a benchmark strat-
egy. The benchmark is a greedy random look-ahead
algorithm that takes the move that gives the most
combined vertical advance in 2 steps. Tiebreaker
is preference to trailing pieces and further ties
are broken by random selection. The result was
measured by winning steps, which is the number
of steps needed for the losing player to finish the
game.

1) Effects of weights: Figure [d] demonstrates the
game results of Al players with tuned weights
and untuned weights. The untuned weights are the
initial weights [0.577,0.577,0.577]7. The results
show that the AI with tuned weights performs
significantly better than one with untuned weights,
which is expected.

2) Effects of search depth: Figure [5] shows the
game results of Al players with search depth 2
and 4. As expected, the Al with search depth 4
outperforms the same strategy with search depth
2. It is worth noting that the worst case runtime
for depth 2 strategy is under 5 seconds, while the
worst case runtime for depth 4 strategy is over 900
seconds.

3) Effects of modified strategy: Figure [6] com-
pares the game results of the basic minimax strategy
and the modified strategy. The modified minimax
strategy improves the performance tremendously for
depth 2, while there’s no significant improvement
for depth 4. The reason is that the endgame algo-

Number of Games

L

4 -2

I

W Untuned Weights, Depth 2
m Tuned Weights, Depth 2

JZIJAJJGLB

Winning Steps

70| B Tuned Weights, Depth

60 Lose

Number of Games
s
8

10 I
% =

-
B Untuned Weights, Depth 4

4

win

2
Winning Steps

Fig. 4. Effects of weights

Number of Games

e

W Depth 2, Tuned Weigh
W Depth 4, Tuned Weigh

Number of Games
w
3

= Depth 2, Untuned Weights
I Depth 4, Untuned Weights

Winning Steps

) ‘
% -2

Fig. 5. Effects of search

3 6 8

2
Winning Steps

depth

rithm in the modified strategy is comparable to the
minimax algorithm with a search depth 4. Though
there’s no improvement in terms of winning steps,
the modified strategy is orders-of-magnitude faster
in terms of time complexity, reducing the runtime
for an average of 400 seconds to less than 10
seconds.

T
= Basic Strategy, Tuned Weights, Depth 2
[Modified Strategy, Tuned Weights, Depth 2

50 Lose Win

Number of Games

2
Winning Steps

r
B Basic Strategy, Tuned Weights, Depth 4
I Modified Strategy, Tuned Weights, Depth 4

Number of Games
w
8

2
Winning Steps

Fig. 6. Effects of modified strategy

REFERENCES

[1] Bell, George 1. 2009. The shortest game of chinese
checkers and related problems. Integers 9(1) 17-39.

[2] Liang, Percy. 2015a. Lecture 8: MDPs IIL
istanford.edu/class/cs221/lectures/mdp2.pdf.

[3] Liang, Percy. 2015b. Lecture 9: Games I. |http://web.|
istanford.edu/class/cs221/lectures/games 1 .pdf.

http://web.stanford.edu/class/cs221/lectures/mdp2.pdf
http://web.stanford.edu/class/cs221/lectures/mdp2.pdf
http://web.stanford.edu/class/cs221/lectures/games1.pdf
http://web.stanford.edu/class/cs221/lectures/games1.pdf

	Introduction
	Board Representation
	Methodology
	Challenges and solutions
	Weights tuning and function approximation
	Run-time complexity and alpha-beta pruning

	Further Development
	Results
	Convergence of weight tuning
	Benchmarking
	Effects of weights
	Effects of search depth
	Effects of modified strategy

	References

