

The Closure Coefficients:

A New Perspective on Network Clustering

Austin R. Benson

Cornell University arb@cs.cornell.edu

Jure Leskovec Stanford University jure@cs.stanford.edu

Background: clustering phenomenon

 Observation: An increased chance of edge existence between nodes with a common neighbor (aka, triadic closure)

• Metric: the clustering coefficient

 $C(v) = \frac{2 \cdot T(v)}{d_v(d_v-1)}$, fraction of length-2 path *centered* at node *v* that are closed

- Used in
 - Role discovery [Henderson et al. 2012, Ahmed et al. 2018]
 - Outlier detection [LaFond et al. 2014]
 - Psychology [Bearman et al. 2004]

Background: clustering explanation

- Explained by local evolutionary processes:
 - Social friendship network
 - Citation
- Question: which node closes this length-2 path?

A fundamental gap in network science between

how clustering is *measured* and *explained*!

- Propose a new and simple metric of triadic closure which is based on the head node, the *closure coefficient*.
- Theoretical and empirical properties:
 - popular nodes are more likely to close triangles;
 - o useful theoretical tool in graph analysis, e.g., community detection;
 - o correlation with temporal triadic closure.

Definition: closure coefficient

• (Local) closure coefficient: fraction of length-2 path headed at node *u* that are closed:

$$H(u) = \frac{2 \cdot T(u)}{W(u)}$$

Computation

$$W(u) = \Sigma_{v \in N(u)}(d_v - 1) = \Sigma_{v \in N(u)}d_v - d_u$$

 Requires the same computational effort as the clustering coefficient!

Definition: closure coefficient

Weak correlation between clustering and closure coefficient!

[Background] The Configuration Model

• A uniform distribution over all graphs with a specified degree sequence (distribution).

[Theory] In the configuration model with any degree distribution $\{p_k\}_{k=1}^{\infty}$, the closure coefficient at any node u satisfies

$$\mathbb{E}[H(u)] \sim (d_u - 1) \cdot const$$

as $n \to \infty$.

$$H(u) = \frac{2 \cdot T(u)}{\sum_{v \in N(u)} d_v - d_u}$$

- $\log \mathbb{E}[H(u)] \approx 1 \cdot \log d_u + const$
- In practice, the increase is slower than that under configuration model.
- Can be partly explained with degree assortativity.
- An open problem.

Background: community structure and detection

Usually formulated as finding a set of nodes *S* with minimal conductance [Schaeffer, 07].

$$\phi(S) = \frac{\#(edges \ cut)}{Vol(S)}$$

- edges cut: •
- *Vol*(*S*) = #(edge end points in *S*)

[Background] clustering coefficient and community detection

- [Gleich & Seshadhri 12]: For any network, there exists a node u^* s.t. $\phi(N(u^*)) \le 2(1 C)$ where *C* is the global clustering coefficient.
 - This upper bound is very loose.
 - We have little information on which node has low conductance neighborhood.
 10 _____fb-Stanford

1.0

real-world networks

- [Gleich & Seshadhri 2012]: There exists a node u^* such that $\phi(N(u^*)) \leq 2(1 C)$.
- [Our result]: For any node u, we have $\phi(N(u)) \le 1 H(u)$.

Stronger result

- Applies to every node, not only the best one;
- Gives a tighter upper bound on the best neighborhood conductance
 - ➢ note: $\max_{u} H(u) ≥ C$, since the global clustering coefficient is a weighted average of closure coefficients.

A simple and elegant proof

• [Our result]: For any node u, we have $\phi(N(u)) \le 1 - H(u)$.

Property: temporal triadic closure

- Clustering and closure coefficients measure the rate of triadic closure on static network.
- However, triadic closure is a graph dynamic evolutionary process.

Property: temporal triadic closure

Definition

- temporal wedge
- temporal closure coefficient $\widetilde{H}(u)$
- temporal clustering coefficient $\tilde{C}(v)$

Property: temporal triadic closure

Recap

- Introduced the local closure coefficient
 - A simple metric for head-based local clustering
- Theoretical and empirical properties
 - increase with node degree
 - useful theoretical tool in graph analysis
 - correlation with temporal triadic closure

Future work

- Applications in network-based machine learning problems
- Theory for the correlation with temporal closure coefficient

Thanks!

Hao Yin Stanford University <u>yinh@stanford.edu</u> Collaborators Austin R. Benson Jure Leskovec

Details are found in

□ Hao Yin, Austin R. Benson, Jure Leskovec. The local closure coefficients: a new perspective on network clustering. In *WSDM*, 2019.