Measuring Directed Triadic Closure with Closure Coefficients

Overview

We propose a new family of metrics for directed triadic closure, which focuses on the "initiator" of a wedge instead of the "center" node.

- Empirical analysis on the metrics exhibits an interesting block structure and a counter-intuitive asymmetry.
- Theoretical analysis under the directed configuration model partly explains the empirical observations, connecting the metrics with the degree distribution of the network.
- We demonstrate that these metrics can be powerful features in networkbased machine learning tasks.

Background

The clustering phenomenon

- Observation An increased chance of edge existence between nodes with a common neighbor (aka, triadic closure).
- **Explanation** "A friend of my friend is my friend."
- Metrics for undirected networks A recent debate on how to measure the rate of triadic closure: based on center or head?
 - center: the clustering coefficient [Watts & Strogatz 98]
 - \succ head: the closure coefficients [Yin et al. 19].

Directed triadic closure

- Idea Edge direction is crucial in the explanation, analysis, and measurement of triadic closure.
- Only center-based metric Directed clustering $v \in C_{io}(u)$ coefficients: a four-dimensional node-level feature [Fagiolo 07].

Definition

Local directed closure coefficients

 $H_{xy}^{z}(u) = T_{xy}^{z}(u) / W_{xy}(u).$

- $x, y, z \in \{i, o\}$: direction of edges.
- Can be naturally generalized to consider bidirected edges separately.

Average directed closure coefficients

$$\overline{H}_{xy}^{z} = \frac{1}{|V|} \sum_{u \in V} H_{xy}^{z}(u)$$

head

 $v \overset{C_{oo}(u)}{\checkmark} w$

center

-(w)

v)**∢**---

in-out wedge

Hao Yin, Austin R. Benson, Johan Ugander

yinh@stanford.edu, arb@cs.cornell.edu, jugander@stanford.edu

Empirical analysis Block structure in local directed closure coefficients Lawyer Advice Florida Bay Food Web - 1.0 $H_{ii}^i(u)$ – $H_{ii}^{i}(u)$ – - 0.8 $H_{oo}^{i}(u)$ $H_{00}^{i}(u)$ $H_{io}^{i}(u)$ $H_{i0}^{i}(u)$ - 0.6 $H_{oi}^{i}(u)$ $H_{oi}^{i}(u)$ 0.4 $H_{ii}^{o}(u)$ $H_{ii}^{o}(u)$ $H_{oo}^{o}(u)$ $H_{oo}^{o}(u)$ 0.2 $H_{io}^{o}(u)$ $H_{io}^{o}(u)$ 0.0 $H_{oi}^{o}(u)$ $H^o_{oi}(u)$

Figure: Heatmap of the correlation matrix of the eight local directed closure coefficients. We observe a clear separation on the eight closure coefficients by the inbound/outbound closure direction. Coefficients within each group are highly correlated while between groups are almost uncorrelated.

 $H_{io}^{i}(u) \\ H_{io}^{i}(u) \\ H_{io}^{i}(u) \\ H_{ii}^{o}(u) \\ H_{io}^{o}(u) \\ H_{io}^{o}(u) \\ H_{oi}^{o}(u) \\ H_{oi}^{o}(u$

Asymmetry in average directed closure coefficients

 $\overline{H}_{ii}^{\iota} \ll \overline{H}_{00}^{o}$, $\overline{H}_{io}^{\iota} \ll \overline{H}_{io}^{o}$: counter-intuitive asymmetry (Florida Bay Food Web)

Theoretical analysis

 $H_{i_0}^i(u)$ $H_{oo}^i(u)$ $H_{oi}^i(u)$ $H_{oi}^o(u)$ $H_{oo}^o(u)$ $H_{oi}^o(u)$

Background The directed configuration model

- A uniform distribution over graphs with a specified joint in- and outdegree sequence $S = [(d_i(u), d_o(u))]_{u \in V}$.
- A degree sequence is characterized by the second-order moments

$$\{M_{ii}, M_{io}, M_{oo}\}$$
 where $M_{xy} = \frac{1}{|V|} \sum_{u \in V} d_x(u) \cdot d_y(u)$.

Theorem For any joint degree sequence *S* and any *local* directed closure coefficient, we have $\overline{y}, \overline{z}$: the opposite direction of y and z.

$$\mathbb{E}[H_{xy}^{z}(u)|S] = \frac{n(d_{z}(u) - \mathbf{1}_{[x=z]})}{m^{2}} \cdot \left(M_{\bar{y}\bar{z}} - \mathbf{1}_{[y=z]} \cdot \frac{m}{n}\right) \cdot (1 + o(1)).$$

- Local directed closure coefficients positively correlates with the node degree in the closure direction!
- Local directed closure coefficients with the same closure direction should be positively correlated, which explains the block structure in the heatmap.

Cornell University

Theorem For any joint degree sequence *S* and any *average* directed closure coefficient, we have

$$\mathbb{E}[\overline{H}_{xy}^{z}|S] = \frac{m - n \cdot \mathbf{1}_{[x=z]}}{m^{2}} \cdot \left(\underline{M}_{\overline{y}\overline{z}} - \mathbf{1}_{[y=z]} \cdot \frac{m}{n}\right) \cdot (1 + o(1)).$$

- Average closure coefficient associates with certain second-order moment of the joint degree sequence.
- Consequently, one should find no surprise for $\overline{H}_{io}^i \ll \overline{H}_{io}^o$:

 \succ \overline{H}_{io}^i associates with $M_{io} = 201.92$;

 \succ \overline{H}_{io}^o associates with $M_{ii} = 493.08$.

and similarly $\overline{H}_{ii}^i \ll \overline{H}_{00}^o$.

Case study

- **Task** To predict the status of a lawyer, partner or associate?
- Method ℓ_1 -regularized logistic regression + 3-fold CV.
- **Compare** Five feature sets:
- Only node degrees
- Only local directed closure coefficients
- Combine degrees and closure coefficients
- Only the center-based clustering coefficients [Fagiolo 07]
- Combine degrees and clustering coefficients [Fagiolo 07]

Validation set accuracy and AUC

	degree	closure	closure + degree	clustering	clustering + degree
accuracy AUC	$0.7887 \\ 0.8742$	0.8723 0.9252	0.8574 0.9166	$0.6296 \\ 0.6446$	$0.7886 \\ 0.8746$

Model interpretation

Features							
	$H^i_{ii}(u)$		$H^o_{ii}(u)$				
	$H_{oo}^i(u)$		$H^o_{oo}(u)$				
	$H_{io}^i(u)$		$H^o_{io}(u)$				
	H ⁱ _{oi} (u)	•••••	H ^o _{oi} (u)				
	$d_i(u)$		$d_o(u)$				
—	$d_b(u)$						

Key References

- 1. Watts, Duncan J., and Steven H. Strogatz. "Collective dynamics of 'small-world' networks." Nature 393.6684 (1998): 440.
- 2. Yin, Hao, Austin R. Benson, and Jure Leskovec. "The Local Closure Coefficient: A New Perspective On Network Clustering." WSDM 2019.
- 3. Fagiolo, Giorgio. "Clustering in complex directed networks." PRE 76.2 (2007): 026107.