Local higher-order graph clustering

Hao Yin Stanford University yinh@stanford.edu

Austin R. Benson

Cornell University arb@cornell.edu

Jure Leskovec Stanford University jure@cs.stanford.edu

David F. Gleich

Purdue University dgleich@purdue.edu

* Code and data available at http://snap.stanford.edu/mappr

Background: Local clustering

- Different from global clustering:
- Target community detection;
- Algorithm only explores a local neighborhood of seed node.

Background: Local clustering

Used to...

- find communities of an individual in social networks [Jeub et al., PRE, 15].
- find members of a protein complex in PPI networks [Voevodski et al., BMC Sys. Biol., 09].
- **find related videos in online media** [Gargi et al., *ICWSM*, 11].
- and much more... [Epasto et al., WWW, 14; Jiang et al., Sys. Biol., 09].

Background: Local clustering

- Existing methods find clusters with many internal edges and few external edges;
- Usually formulated as finding a cluster *S* with minimal (edge) conductance [Schaeffer, 07].

•
$$Vol(S) = #(edge end points in S) = \sum_{u \in S} deg(u)$$

However, edges are not the only interesting structures in networks!

Background: Higher-order structure

Higher-order connectivity patterns, or *network motifs*, mediate complex networks.

Triangles in social networks.

Rapoport, 1953; Granovetter, 1973.

Background: Motif-based graph clustering

Idea: Find a cluster S with minimal motif conductance [Benson et al., 16]

 $\phi_M(S) = \frac{\#(motifs \ cut)}{Vol_M(S)}$ $\circ \ motifs \ cut:$ $\circ \ Vol_M(S) = \#(motif \ end \ points \ in \ S)$

Significant improvement in ground truth community detection and knowledge discovery [Benson et al., 16]

However, current motif-based clustering methods are global, and no motif-based local clustering method exists!

Our work: Local motif-based graph clustering

		Global method	Local method
better results	Edge-based	[Fiedler, 1973]	[Anderson et al., 2006]
	Motif-based	[Benson et al., 2016]	Our Work
•			`

scalable and faster

Problem:

- Input: a network, a seed node, and a motif.
- **Output:** a cluster containing the seed node with minimal motif conductance.

Our work: Local motif-based graph clustering

Different motifs give different local clustering results!

Our work: Local motif-based graph clustering

Challenge

- A generalization of the conductance minimization problem which is NP-hard [Wagner and Wagner, 1993].
- No existing methods for local clustering based on motif conductance.

Our approximate solution: MAPPR

Motif-based Approximate Personalized PageRank Algorithm

• A generalization of the APPR method [Andersen et al., 06].

MAPPR: Overview

• Key ideas and steps:

- 1. Create a weighted graph with *weighted edge conductance* equals the *motif conductance* in the original graph;
- 2. Find a cluster of minimal weighted edge conductance.

MAPPR: Overview

• Key ideas and steps:

- 1. Create a weighted graph with *weighted edge conductance* equals the *motif conductance* in the original graph;
- 2. Find a cluster of minimal weighted edge conductance.

• Properties:

- Runtime guarantee
 - Procedure stops upon finding a good cluster, no need to explore the rest of graph.
- Quality guarantee
 - > Finds a near-optimal cluster regarding motif conductance.

MAPPR Step I: Weighted graph

• Create a weighted graph with

w(i,j) =#motif instances containing nodes *i* and *j*.

• The motif conductance (approximately) equals the **weighted edge conductance** in this weighted graph [Benson et at.,16].

MAPPR Step II: APPR vector

- Compute an approximate PPR vector for this weighted graph.
 - The PPR vector *p* is the stationary distribution of a random walk which at each step it "teleports" back to the seed with some probability.
 - $\circ p(u)$ measures an "integrated closeness" of node u to the seed.
 - On a weighted graph, we choose each edge with probability proportional to its weight.
 - We adapted the approximate PPR algorithm [Anderson et al., 06] for weighted graphs.

MAPPR Step III: Sweep

- Use the sweep procedure on APPR vector *p* to output the set with minimal weighted edge conductance [Anderson et al., 06].
 - 1) Sort nodes by $p(u)/d_w(u) : u_1, u_2, ... u_{[p]};$
 - 2) Compute the conductance of each

$$S_r = \{ u_1, u_2, \dots, u_r \};$$

3) Output the S_r with minimal weighted edge conductance.

MAPPR: Runtime

Theory

After motif counting, for each seed, the algorithm finishes in time proportional to the *output cluster size*!

• No dependence on graph size!

Key part of proof: Interpret integer-weighted edges as parallel unweighted edges, then apply the previous analysis [Anderson et al., 06].

Practice

Takes < 2 seconds / seed on 2 billion edge graphs!

Global motif-based method takes 2 hours.

MAPPR: Quality

Theory

For any unknown target community T, MAPPR seeded with most nodes in T would output a cluster S with

$$\phi_M(S) \leq \tilde{O}\left(\min\left(\sqrt{\phi_M(T)}, \phi_M(T)/\sqrt{\eta}\right)\right).$$

- η is the inverse mixing time of the subgraph induced by *T*.
- Guaranteed to find a near-optimal cluster.
- Results inherited from classic APPR analysis [Anderson et al., 06, Zhu et al., 13].

Practice

• Better recovers ground truth communities!

Random graph models with planted community structure:

1. Planted partition model

Random graph models with planted community structure:

1. Planted partition model

2. Lancichinetti-Fortunato-Radicchi (LFR) model [Lancichinetti et al., 08, 09]

A variant of planted partition model with

- power-law degree distribution,
- community overlapping,
- power-law community size distribution, etc.

Experiment Procedure:

• Seeded at every node, compute the F_1 score of the MAPPR cluster with

the ground truth cluster, and take the average.

Experiment Procedure:

- Seeded at every node, compute the F_1 score of the MAPPR cluster with the ground truth cluster, and take the average.
- Repeat this experiment under different mixing level

 μ : fraction of edges across the ground truth communities.

- A large region of μ where MAPPR with triangle motif outperforms the edge-based method!
- Intuition: Edges across different communities are less likely to form a triangle.

MAPPR: Better discovery on real-world networks

email-Eu network

- Nodes are people at a research institute.
 Each person belongs to a department.
- Edges are email correspondence.
- Given a person as a seed, can we recover other members of his/her department?

Graph Statistics:	
Nodes:	1K
Edges:	25.6K
Departments:	28
Depart. Sizes:	10 109

New dataset!

http://snap.stanford.edu/data/email-Eu-core.html

MAPPR: Better discovery on real-world networks

email-Eu network

- Nodes are people at a research institute.
 Each person belongs to a department.
- Edges are email correspondence.
- Given a person as a seed, can we recover other members of his/her department?

A 25% improvement!

Triangle motif better discovers ground truth communities!

MAPPR: Better discovery on real-world networks

email-Eu network

- Nodes are people at a research institute.
 Each person belongs to a department.
- Edges are email correspondence.
- Given a person as a seed, can we recover other members of his/her department?

Both feed-forward loop and cycle are important in discovering communities structure in communication network!

More in the paper: Finding good seeds

- Idea: A vertex with low 1-hop neighborhood motif conductance has lower motif conductance in its MAPPR cluster.
- Theory: Vertex 1-hop neighborhoods have low motif conductance.
 Related with *higher-order clustering coefficient* [Yin et al., 17].

- Proposed the MAPPR algorithm for local motif-based graph clustering
 - ✓ Runtime guarantee
 - ✓ Quality guarantee
 - ✓ Better recovery in synthetic models and real-world datasets
- Finding Good Seeds

Local higher-order graph clustering

Hao Yin, Austin R. Benson, Jure Leskovec, David F. Gleich

* Code and data available at http://snap.stanford.edu/mappr